A is a point on the parabola $y^2 = 4ax$. The normal at A cuts 2. the parabola again at point B. If AB subtends a right angle at the vertex of the parabola. find the slope of AB.

(1982 - 5 Marks)

Solution: -

Parabola $y^2 = 4ax$. 2.

Let at any pt A equation of normal is

$$y = mx - 2am - am^3$$
. ...(1)

Combined equation of OA and OB can be obtained by making equation of parabola homogeneous with the help of normal.

Combined eq. of OA and OB is

$$y^2 = 4ax \left(\frac{mx - y}{2am + am^3} \right)$$

[From eqn. (1) using
$$\frac{mx-y}{2am+am^3}=1$$
]

$$y^2 = \frac{4x(mx - y)}{2m + m^3}$$

$$y^{2} = \frac{4x(mx - y)}{2m + m^{3}}$$

$$\Rightarrow 4mx^{2} - 4xy - (2m + m^{3})y^{2} = 0$$

But angle between the lines represented by this pair is 90°.

$$\Rightarrow$$
 coeff. of x^2 + coeff of $y^2 = 0 \Rightarrow 4m - 2m - m^3 = 0$

$$\Rightarrow m^3 - 2m = 0 \Rightarrow m = 0, \sqrt{2}, -\sqrt{2}$$

But for m = 0 eq. of normal becomes y = 0 which does not intersect the parabola at any other point.

$$m = \pm \sqrt{2}$$